3A & 3B Mathematics

Test 1 2009 50 marks

50 minutes + 2 minutes reading

Name

1. [2, 1, 2, 2 marks]

A winery produces a fine liquer which is predicted to increase in value by 4.8% p.a.

- How much will a bottle of liquer be worth in 2 years time, if it presently sells for \$45? (a) A=P(1+0)" = 45(1+0.048)2 = 49.42
- How much will a bottle of liquer be worth in n years time, if it presently sells for \$45? $f = 45(1048)^{11}$ (b)
- The winemaker plans to release the liquer when it reaches a value of \$100. How (c) long will they have to wait for this to be the case? A: 17
- Another red wine produced by the winery is increasing in value at 2.3% p.a. If a (d) large flagon presently sells for \$74, how long will it be before the Liquer becomes more expensive than the flagon?

1an the flagon?

$$45 (1.048)^{4} > 74(1.023)^{4} = 0.41.048 \times 1$$

$$22 = b_{11} = b_{11} \times 1.023 \times 1$$

$$b_{23} = 0.45$$

$$b_{31} = b_{11} \times 1.023 \times 1$$

$$b_{32} = 0.45$$

$$b_{33} = 0.45$$

$$b_{34} = 0$$

2. [2, 1, 2, 2 marks]

(b)

Given p(x) = 5x + 3 and q(x) = 2 - x, find the following:

the point of intersection of the two lines, (a)

p(4) = 23

1

 $2^{(-1)} = 2^{-(-1)}$ p(3) = 5(3) + 3 = 18(c)

(d) the value of k for which p(k) = -2.

3. [1, 1, 3 marks]

A function has a defining rule $y = 2x^2$

Determine the defining rule for the new function if the graph of this function is

(i) moved 2 units left,

$$y=2(x+4)^2$$

(ii) reflected in the y-axis,

reflected in the x-axis, then moved 3 units right and then 1 unit up. (iii)

$$y = -2(x-3)^2 + 1$$

4. [4 marks]

A cubic polynomial intersects the x-axis at x = -2, 3, 5.

Given that the graph goes through the point (4, 2) find the equation for the polynomial in the

form, $y = ax^3 + bx^2 + cx + d$.

$$(-2,0)$$
 $(3,0)$
 $(5,0)$
 $(4,2)$

5. [6 marks]

With the aid of a graphic calculator produce a sketch of

$$y = x^3 - 3x^2 + 4$$

Indicate any turning points, intercepts with the axes and points of inflection. If any rounding is necessary give answers correct to 2 decimal places.

6. [2, 2, 2, 2, 2 marks]

Match each of the graphs below with its corresponding function. Choose from the functions listed below, where a, b, c, d and e are positive integers:

(1)
$$y = ax - b$$
 (2) $y = d^{x} + 1$

(3.)
$$y = -ax^3 + x^2 + dx$$

$$y = x^3 - ax - b$$
 $y = c^{x-1}$

6.
$$y = \frac{1}{x + c}$$

$$y = x^2 + x - e$$
 (8.) $y = x^2 - x - d$ (9.) $y = \frac{1}{x - b} + a$

$$y = \frac{1}{x - b} + a$$

10.
$$y + ax = b$$
 11. $y = \frac{1}{x-a}$

7. [2, 3, 3 marks]

State the domain and range for the following functions:

$$x = \{2/1, 0, -3, -3/6\}$$

$$y = \{3, -9/4, 45/1\}$$

(b)
$$y = x^2 + 4x + 3$$

(c)
$$y = \frac{1}{2x-3} + 1$$

(c)
$$y = \frac{1}{1} + 1$$

(c)
$$y = \frac{1}{2x-3} + 1$$

ZER

[3 marks] 8.

Given the graphs for $f(x) = ax^3 + bx^2 + cx + d$ and $g(x) = ex^2 + fx + g$, for real constants a, b, ,,g, solve to 1 decimal place, the equation f(x) = g(x)

